33. Physical Properties of Anthraquinone and its Derivatives. Part I. Infrared Spectra.

By H. Bloom, L. H. Briggs, and B. Cleverley.

The infrared spectra between 2 and 15μ of anthraquinone and fifty-nine derivatives of it are reported, and correlations to assist the identification of unlisted anthraquinones are discussed.

In a survey by Briggs et al. ${ }^{1}$ of the colouring matters of the Coprosma genus, various new hydroxyanthraquinones were isolated. To aid the elucidation of their structure, an investigation of the physical properties of hydroxy- and other substituted anthraquinones is being made. In this paper the infrared absorption spectra of anthraquinone and fiftynine of its derivatives are reported and, where possible, correlations are made between the structure and observed absorption pattern. It is hoped to submit later reports on ultraviolet absorption spectra, half-wave potentials, and chromatographic properties of this series.

Experimental.-The anthraquinones were mostly natural products but some were of commercial origin. Derivatives without hydroxyl groups were purified by crystallization, but hydroxyanthraquinones were also purified by previous chromatography on columns of magnesia or magnesium carbonate. The spectra were recorded between 2 and 15μ on a Beckman IR-2 spectrophotometer with rock-salt monochromator, the samples being prepared as paraffin mulls because of the low solubility of hydroxyanthraquinones in any suitable solvent.

Results and Discussion.-The sixty anthraquinones with their observed absorption bands are listed in Table 1. Spectra of anthraquinone derivatives having the same substitution pattern were found to be similar, regardless of the substituents, provided these compounds contained no hydroxyl groups. Hence compounds without hydroxyl groups are arranged first in the Table. β-Hydroxy-derivatives which show, in addition, absorption in the $\mathrm{O}-\mathrm{H}$ stretching region are listed next; α-hydroxy-derivatives, in which the substitution pattern of the spectra is strongly modified, are given last. Bands arising in the regions of the $\mathrm{C}-\mathrm{H}$ stretching and bending vibrations at around $3000 \mathrm{~cm} .^{-1}$ and between 1480 and $1360 \mathrm{~cm} .^{-1}$ are omitted because of the difficulty of measuring these in the presence of the paraffin mulling agent.

The hydroxyl and carbonyl stretching regions of absorption have been most often investigated by other workers, and a correlation between spectra in these regions and constitution has enabled certain limited groupings of anthraquinones to be made, thus assisting in their identification. The results in Table 1 extend the value of their correlations considerably. In the hydroxyl region they show that anthraquinones with one hydroxyl group in the β-position on the nucleus, or attached to a substituent group, all have one hydroxyl stretching band. The appearance of more than one hydroxyl band between 3600 and $3150 \mathrm{~cm} .^{-1}$ indicates more than one such hydroxyl group attached to the anthraquinone nucleus, although the reverse does not always hold. More than one hydroxyl band appears only when two β-hydroxyl groups are adjacent or when β-hydroxyl groups are in a different environment, one in the normal position on the anthraquinone ring, and the other attached through a side chain or adjacent to some other α - or β-hydroxyl group.
α-Hydroxyl groups attached to the nucleus apparently show no hydroxyl absorption in a spectrum of a mulled sample. This was noted first in the overtone region by Hilbert, Wulf, Hendricks, and Liddel ${ }^{2}$ and later by Flett, ${ }^{3}$ working with the rock-salt region. The same effect was found by Johnson, Quayle, Robinson, Sheppard, and Todd ${ }^{4}$ for hydroxy-derivatives of the extended quinones, but their investigation of a few simple α-hydroxyanthraquinones revealed a weak, broad absorption band with its centre near $2700 \mathrm{~cm} .^{-1}$ which they assigned to the $\mathrm{O}-\mathrm{H}$ stretching vibration. Hadzi and Sheppard, ${ }^{\text {s }}$ working with perfuorokerosene mulls, assigned a broad strong peak at $2900 \mathrm{~cm} .^{-1}$, usually hidden by the paraffin mulling agent,

[^0]Table 1．Spectra of paraffin mulls of anthraquinones．
Frequency of infrared bands

$\begin{array}{cc}1675 \mathrm{~s} & 1572 \mathrm{~m} \\ \text { Monosubstituted } & \text { anthraquinones } \\ 1678 \mathrm{~s} & 1572 \mathrm{~m} \\ 1678 \mathrm{~s} & 1585 \mathrm{~s} \\ 1667 \mathrm{~s} & 1631 \mathrm{~s} \\ 16782 \mathrm{~s} & 1582 \mathrm{~s} \\ 1675 \mathrm{~s} & 1575 \mathrm{~s} \\ 1667 \mathrm{~s} & 1592 \mathrm{~s} \\ & 1587 \mathrm{~s}\end{array}$

$\begin{array}{llll} & 1634 \mathrm{~s} & \text { 1600s } & 1572 \mathrm{~s} \\ & 1664 \mathrm{~s} & 1634 \mathrm{~s} & 1592 \mathrm{~s} \\ & & \\ 1678 \mathrm{~s} & 1621 \mathrm{~s} & 1600 \mathrm{w} & \end{array}$

$\frac{E}{\square}$
先咭

皆志
酉
$\begin{array}{cc}\text { 등… } & \stackrel{3}{0} \\ 0 & 0 \\ 0\end{array}$

B.			$\stackrel{3}{\mathbf{B}}$				

$\underset{\underset{\sim}{\circ}}{\stackrel{\leftrightarrow}{6}}$		30～0

岳 总

⿹ㅓㄷ․․

㕆 志

| 틍 |
| :--- | :--- |

－
©

管边：

珮

腎
家発 1355 m
1340 s

尔年䂞：

$\stackrel{3}{*}$	穾䂞号品	尔告

3344s

No．Anthraquinone

Table 1．（Continued．）
Frequencies of infrared bands
Trisubstituted anthraquinones
1664 s
1570 s 1664 s
1669 s
1669 $\begin{array}{ll}1664 \mathrm{~s} & 1570 \mathrm{~s} \\ 1669 \mathrm{~s} & 1570 \mathrm{~s} \\ 1669 \mathrm{~s} & 1570 \mathrm{~s}\end{array}$ $\begin{array}{lll}1669 \mathrm{~s} & & 1570 \mathrm{~s} \\ 1658 \mathrm{~s} & 1629 \mathrm{~s} & 1572 \mathrm{~s}\end{array}$
\qquad号 $1664 \mathrm{~s} \quad 1634 \mathrm{~s}$

$$
\begin{aligned}
& \mathrm{s} 789 \mathrm{I} \\
& \mathrm{~s} 089 \mathrm{I}
\end{aligned}
$$

 1570s
1575 w
会侖登

[^1] $1653 \mathrm{~s} \quad \begin{array}{llll}1616 s & 1595 \mathrm{~s} & 1555 \mathrm{~s}\end{array}$ 1616s 1575 s Trisubstituted anthraquinones

${\underset{\sim}{\infty}}_{\infty}$ n
∞
∞
∞
$\underset{\infty}{\infty}$

둥
n 동․品 nes
833 s
 1030w 1006 m
1002 s

통

Z

$\stackrel{\infty}{\infty}$
nos

䇣等

츸
©
$=1$

かか？
Table 1. (Continued.)
Frequencies of infrared bands.

1199 m	
1205 w	1189 w
	1181 s
1200 w	1182 w
1200 s	1185 s
1198 m	1174 m
1198 m	1182 m
1200 w	1167 m
1220 s	1170 s
	1175 w
	1171 s
1206 w	1179 s
	1190 s
	1171 m

1198 m 1183m

to the α-hydroxyl stretching frequency. To clarify the position, the spectrum of α-hydroxyanthraquinone has been re-investigated, using potassium bromide pressed discs and mulls in hexachlorobutadiene. A broad, weak absorption band with centre at approximately 2700 $\mathrm{cm} .^{-1}$ was obtained in both cases, corresponding to the stretching frequency of chelated hydroxyl bonds. ${ }^{4}$ In addition, there was a broad peak of medium strength at $3039 \mathrm{~cm} . .^{-1}$, assignable to the normal aryl $\mathrm{C}-\mathrm{H}$ stretching frequency.

The absence in paraffin mulls of the usual hydroxyl stretching vibration is accompanied by a profound change in frequency and intensity of the stretching vibration of the carbonyl group adjacent to the α-hydroxyl group, so that a second, more intense band at lower frequency results. From his work in the hydroxyl and carbonyl regions of some hydroxy-derivatives Flett ${ }^{3}$ suggested a useful grouping according to the arrangement of the α-hydroxyl groups in hydroxyanthraquinones, and this was extended by Howard and Raistrick ${ }^{6}$ to include hydroxyanthraquinones with other substituted groups. With the large number of complex anthraquinones available for this study it has been possible to extend still further the usefulness of the spectra in this region. In Table 2 are set out the carbonyl frequencies of anthraquinones grouped according to the arrangement of α-hydroxy-groups on the nucleus. (The numbers in parentheses indicate the number of compounds measured.)

Table 2.

	$\mathrm{C}=0$ frequencies			
Group no.	Type of anthraquinone	a	b	Δ
1	No $\alpha-\mathrm{OH}$ (18)	1678-1653	-	
2	$1-\mathrm{OH}$ (14)	1675-1647	1637-1621	24-38
3	$1: 4-$ and $1: 5-(\mathrm{OH})_{2}(11)$	1645-1608		
4	1: 8-(OH$)_{2}(8)$	1678-1661	1626-1616	40-57
5 6		$1616-1592$ $1592-1572$	-	-

Depending on the number of carbonyl peaks and their frequency range, it is possible, with the minimum overlapping, to place an anthraquinone in one of the six groups of Table 2.

In group 3, the lone carbonyl frequency of the 1:3:5:7-tetrahydroxy-derivative has an exceptionally low value ($1608 \mathrm{~cm} .^{-1}$), falling below $1616 \mathrm{~cm} .^{-1}$ which is the upper limit for the single peak of compounds in group 5. Exceptions are 1:2:6- and 1:2:7-trihydroxyanthraquinone, which, instead of the expected two carbonyl peaks, have only one, at 1650 and 1647 $\mathrm{cm} .^{-1}$ respectively. Both 2:6- and 2:7-dihydroxyanthraquinone have very low carbonyl frequencies (1656 and $1653 \mathrm{~cm} .^{-1}$ respectively), and it is possible that in the case of $1: 2: 6$ and 1:2:7-trihydroxyanthraquinone, the vibrations of the two carbonyl groups, now that they are closer in frequency and linked through a conjugated system, have become indistinguishable. In the case of 1:2:3:7-tetrahydroxy-6-methylanthraquinone (compound 55), the weaker of the two carbonyl absorptions (normally expected to appear at about $1675 \mathrm{~cm} .^{-1}$) is masked by the strong, very broad peak at $1595 \mathrm{~cm} .^{-1}$, while the stronger carbonyl absorption appears only as a band on the side of the $1595 \mathrm{~cm} .^{-1}$ peak. Another apparent exception is 1:3:8-trihydroxyanthraquinone-6-carboxylic acid (compound 46) where the high-frequency carbonyl band is masked by the absorption of the carboxyl group at $1706 \mathrm{~cm} .^{-1}$.

In anthraquinones with no α-hydroxyl groups, the single carbonyl frequency occurs between 1678 and $1653 \mathrm{~cm} .^{-1}$ and, except in cases of strongly electrophilic substituent groups which raise the frequency a few $\mathrm{cm} .^{-1}$, the position and nature of the substituent groups have no noticeable effect on the carbonyl frequency. This is in contrast with the benzoquinones, where the effect of substituent groups can be predicted. ${ }^{7}$

The lowered frequency of the α-hydroxyl group and the accompanying changes of intensity and frequency in the carbonyl region have been ascribed by Hilbert, Wulf, Hendricks, and Liddel ${ }^{2}$ to what was later called " conjugated-chelation " ${ }^{8}$ where the strength of hydrogenbonding between the hydroxyl and the carbonyl group (I) and (II) is enhanced by resonance with an ionic form (III) having a conjugated system in which the donor-acceptor properties of the chelating centres are increased. A conjugated-chelate system always results in the disappearance or lowering of the hydroxyl stretching frequency, and at the same time the

[^2]carbonyl band is lowered in frequency and increased in intensity owing to the weakened force constant and increased moment of the bond. Flett ${ }^{3}$ considers an ionic form unimportant, but considers that form (IV) makes a considerable contribution. Josien, Fuson, Lebas, and Gregory ${ }^{9}$ consider the hydrogen to be equally bonded to the two oxygen atoms in a similar way, but Hadži and Sheppard ${ }^{5}$ reject these suggestions since too great a lowering of the hydroxyl frequency would result. They also suggest considerable resonance through the conjugated system (II) and (III). Further consideration, however, as, for example, a comparison of α - and β-hydroxy- and α - and β-amino-anthraquinone, suggests that the primary cause of the lowering of the carbonyl frequency of α-hydroxyanthraquinones is, not chelation, but altered electrondistribution as in forms (V)-(VI) and (VII)-(VIII), chelation serving only to stabilize the resulting ionic forms.

(I)

(II)

(III)

(IV)

Electron re-distribution to give an ionic form $=\mathrm{OH}^{+}$takes place less readily than that giving $=\mathrm{NH}_{2}{ }^{+}$in the amino-derivatives, and this is reflected in the frequencies of the perturbed carbonyl vibrations of α - and β-aminoanthraquinone ${ }^{3}$ compared with the frequencies of the corresponding hydroxyanthraquinones set out in Table 3. Chelation is not important for aminoanthra-

Table 3.

$C=O$ frequencies

a	b
1675	-
1665	1612
1676	1625
1667	1631

Hydrogen-stretching frequencies
$\mathbf{3 4 2 0}, \mathbf{3 3 0 0}$
$\mathbf{3 4 7 0}, \mathbf{3 3 3 0}, \mathbf{3 2 2 0}$
$\mathbf{3 3 4 4}$
quinones, hydrogen stretching frequencies in the α - and β-substituted compounds being hardly different. That the single carbonyl frequency of β-hydroxyanthraquinone is lower than that of anthraquinone itself suggests a small contribution from the mesomeric effect, as in (VI).

(V)

(VI)

(VII)

(VIII)

In the same way the carbonyl frequency of α-hydroxyanthraquinone is initially lowered by resonance with an ionic form (V), which is stabilised by chelation because of the greater donoracceptor properties of the ionic forms of the carbonyl and hydroxyl groups (III). That chelation, of itself, does not lower the carbonyl frequency is shown by the extended quinones, 2:11- (IX) and 4:9-dihydroxyperylene-3: 10-quinone (XI), where the carbonyl vibrations absorb at $1621 \mathrm{~cm} .^{-1}$ and $1631 \mathrm{~cm}^{-1}$ respectively, ${ }^{10,11}$ even though hydrogen bonding is so strong in the second compound that it has no hydroxyl absorption peak. In spite of the fact that chelation through a five-membered ring, of either the ionic (X) or the non-ionic form (IX) of the first compound, is less likely than chelation of the two forms (XI) and (XII) of the second compound, the carbonyl frequency of the first compound is the lower. This suggests, as in the case with the aminoanthraquinones, that altered electron distribution, rather than chelation, is primarily responsible for the lowering of the carbonyl frequency of hydroxy-quinones.

[^3]
184 Physical Properties of Anthraquinone and its Derivatives. Part I.

All the compounds examined have a further strong band in the double-bond region characteristic of $C=C$ frequency. The position of this varies, but is most often around 1575 $\mathrm{cm} .^{-1}$. In a few cases where the carbonyl frequency is very low, the two bands are indistinguishable. A similar band in the spectra of the p-benzoquinones at a slightly higher frequency ${ }^{7}$ is attributed to the $\mathrm{C}=\mathrm{C}$ stretching frequency of the quinone. For anthraquinones the double bonds that are conjugated directly with a carbonyl vibration have a more aromatic nature and occur at a lower frequency than normal. Further aromatic absorption occurs less

(1N)

(X)

(X1)

(XII)
regularly throughout the series, but is often masked by peaks of the mulling agent. The band around $1575 \mathrm{~cm} .^{-1}$ is useful in distinguishing anthraquinones of the $1: 4$ - and the $1: 5$-dihydroxygroup from those of the $1: 4: 5$-trihydroxy-group. Both groups have only one carbonyl absorption band, and the frequency range in the two cases overlaps. The $\mathrm{C}=\mathrm{C}$ peak has a frequency greater than $1575 \mathrm{~cm} .^{-1}$ characteristic of the $1: 4$ - and $1: 5$-dihydroxy-group of anthraquinones, but less than $1575 \mathrm{~cm}^{-1}$ of the $1: 4: 5$-trihydroxy-group. If there appears to be more than one such peak, the average frequency of peaks higher than $1500 \mathrm{~cm} .^{-1}$ is taken for classification. For anthraquinones in the $1: 4: 5: 8$-tetrahydroxy-group the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ frequencies are indistinguishable. For anthraquinones having no α-hydroxyl groups the $\mathrm{C}=\mathrm{C}$ band generally has a higher frequency and is less variable than in the other groups.

It is not possible to assign further peaks to particular vibrations. Hadži and Sheppard ${ }^{5}$ assigned some bands in the spectra of four hydroxyanthraquinones to hydroxyl deformation vibrations, but similar bands are found in most anthraquinones, whether containing hydroxyl groups or not. The out-of-plane $\mathrm{C}-\mathrm{H}$ deformation bands are expected to be found in the region $900-650 \mathrm{~cm} .^{-1}$. Absorption bands of methyl and methylene substituent groups are obscured by the mulling agent.

Apart from the regions of their characteristic absorption the effect of substituent groups on the rest of the spectrum is small, the position of a group on the anthraquinone nucleus being of more importance in determining the overall spectrum than the nature of the group. This is so, not only in the region of the $\mathrm{C}-\mathrm{H}$ out-of-plane deformation vibrations of the anthraquinone nucleus where substitution of another group for a hydrogen atom must change the vibration spectrum, but also from the double-bond stretching region down through the $\mathrm{C}-\mathrm{H}$ deformation vibrations beginning around $900 \mathrm{~cm} .^{-1}$.

It may be seen from Table 1 , that derivatives listed under the same heading of substitution pattern have many common bands within a narrow range of frequency and intensity. There are eleven groups of anthraquinones with different characteristic substitution patterns. Perusal of the Table shows that the common bands in each group can be distinguished from those of other groups, thus enabling an unknown anthraquinone to be classified within a definite group and therefore assisting in its identification (with the help of other available chemical, physical, and biosynthetic evidence).

Summary of Diagnostic Features.-(1) The infrared absorption spectrum of each of the 60 anthraquinones is unique and can be used to " fingerprint" each compound.
(2) β-Hydroxyl groups can be detected by the appearance of a sharp band in the region $3600-3150 \mathrm{~cm} .^{-1}$. If there is more than one such band, two or more hydroxyl groups are attached to the anthraquinone nucleus in β-positions, each having a different environment.
(3) Derivatives with no α-hydroxyl group have one strong carbonyl band in the region $1678-1653 \mathrm{~cm} .^{-1}$.
(4) Derivatives with one α-hydroxyl group have two carbonyl frequencies, one in the region
$1675-1647 \mathrm{~cm} .^{-1}$, and an even stronger band between 1637 and $1621 \mathrm{~cm} .^{-1}$, the frequency separation between the bands lying in the range $24-38 \mathrm{~cm} .^{-1}$.
(5) Substitution by two α-hydroxyl groups in the 1:4- and 1:5-positions yields spectra with a single carbonyl band between 1645 and $1608 \mathrm{~cm} .^{-1}$.
(6) Derivatives with two α-hydroxyl groups in the $1: 8$-positions have two bands, one between 1678 and $1661 \mathrm{~cm} .^{-1}$ and the other, stronger one between 1626 and $1616 \mathrm{~cm} .^{-1}$, the frequency separation between the peaks lying between 40 and $57 \mathrm{~cm} .^{-1}$.
(7) Substitution of α-hydroxyl groups in the $1: 4: 5$-positions yields a single carbonyl band between 1616 and $1592 \mathrm{~cm} .^{-1}$.
(8) Derivatives with four α-hydroxyl groups, i.e., in the $1: 4: 5: 8$-positions, have a single carbonyl band, in the region $1592-1572 \mathrm{~cm} .^{-1}$.
(9) The average $C=C$ stretching band in anthraquinones of the $1: 4$ - and the $1: 5$-dihydroxygroup has a frequency greater than $1575 \mathrm{~cm} .^{-1}$, while in the case of the $1: 4: 5$-trihydroxygroup, it is less than $1575 \mathrm{~cm} .^{-1}$. For anthraquinones of the $1: 4: 5: 8$-tetrahydroxy-group, the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bands are indistinguishable.
(10) It is possible to group the spectra of anthraquinones of the same substitution pattern according to the frequency and intensity of the absorption bands.

We thank Professor H. Raistrick, Sir Robert Robinson, O.M., F.R.S., Dr. B. Siegfried, Imperial Chemical Industries Limited, and CIBA Ltd., for many compounds used in this investigation. We are grateful to Messrs. R. N. Seelye and L. Colebrook for helpful discussion and assistance in checking the Tables. Assistance is also gratefully acknowledged from the Chemical Society, the Rockefeller Foundation of New York, the Australian and New Zealand Association for the Advancement of Science, and the Research Grants Committee of the University of New Zealand. One author (B. C.) is further indebted for a University Research Fund Fellowship.

[^0]: ${ }^{1}$ Briggs and his co-workers, "Chemistry of the Coprosma Genus," Parts I-X, Part X (J., 1955, 3298 and earlier papers).
 ${ }^{2}$ Hilbert, Wulf, Hendricks, and Liddel, J. Amer. Chem. Soc., 1936, 58, 548.
 ${ }^{3}$ Flett, $J ., 1948,1441$.
 ${ }^{4}$ Johnson, Quayle, Robinson, Sheppard, and Todd, J., 1951, 2633.
 ${ }^{5}$ Hadži and Sheppard, Trans. Faraday Soc., 1954, 50, 911.

[^1]: （OH） 0 ，

[^2]: * Howard and Raistrick, Biochem. J., 1955, 59, 478.
 ${ }^{7}$ Yates, Ardao, and Fieser, J. Amer. Chem. Soc., 1956, 78, 650.
 ${ }^{8}$ Rasmussen, Tunnicliff, and Brattain, ibid., 1949, 71, 1068.

[^3]: - Josien, Fuson, Lebas, and Gregory, J. Chem. Phys., 1953, 21, 331.

 10 Brown and Todd, J., 1954, 1280.
 ${ }_{11}$ Calderbank, Johnson. and Todd, J., 1954, 1285.

